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Abstract In this paper, we consider the operator L generated in L2 (R+) by the
differential expression

l (y) = −y′′ +
[
ν2 − 1

4

x2 + q (x)

]
y, x ∈ R+ := (0,∞)

and the boundary condition

lim
x→0

x−ν− 1
2 y (x) = 1,

where q is a complex valued function and ν is a complex number with Reν > 0. We
have proved a spectral expansion of L in terms of the principal functions under the
condition

Sup
x∈R+

{
eε

√
x |q(x)|

}
< ∞, ε > 0

taking into account the spectral singularities. We have also investigated the conver-
gence of the spectral expansion.
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1 Introduction

The spectral analysis of a non-selfadjoint differential operators with continuous and
discrete spectrum was investigated by Naimark [1] He showed the existence of spectral
singularities in the continuous spectrum of the non-selfadjoint differential operator L0,
generated in L2 (R+), by the differential expression

l0 (y) = −y′′ + q (x) y, x ∈ R+ = [0,∞) (1.1)

with the boundary condition y
′
(0)−hy(0) = 0, where q is a complex valued function

and h ∈ C . If the following condition

∫
eεx |q(x)| dx < ∞, ε > 0

satisfies, then L0 has a finite number of eigenvalues and spectral singularities with
finite multiplicities.

Another approach for the discussion of the spectral analysis of L0 was given by
Marchenco [2]. Let E denote the set of all even entire functions of exponential type
which are integrable over the real axis, and let E

′
denote the dual of E . We define

ϕ( fi , λ) =
∞∫
0

fi (x)ϕ(x, λ)dx, i = 1, 2

for any finite f1, f2 ∈ L2(R+),where ϕ(x, λ) is the solution of l0 (y) = λ2 y, subject
to the initial conditions ϕ(0, λ) = 1, ϕx (0, λ) = h. In [2] Marchenko showed that

ϕ( f1, λ), ϕ( f2, λ) ∈ E,

and there exists a functional T ∈ E
′

such that

∞∫
0

f1(x) f2(x)dx = T [ϕ( f1, λ), ϕ( f2, λ)] (1.2)

T is the generalized spectral function of L0. (1.2) is a generalization of the well-
known Parseval equality for the singular selfadjoint differential operators, and it is
called Marchenko-Parseval equality.

Lyance [3] has studied the effect of spectral singularities in the spectral expansion
in terms of the principal functions for the operator L0.

The Laurent expansion of the resolvents of the abstract non-selfadjoint operators
in neighborhood of spectral singularities was investigated by Gasymov and Maksu-
dov [4] and Maksudov and Allkhverdiev [5]. They also studied the effect of spectral
singularities in the spectral analysis of these operators.
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The spectral analysis of some classes of dissipative operators with spectral singu-
larities was considered by Pavlov [6] using the theory of functional models [7] and
scattering theory [8].

Some problems of spectral theory of differential and some others types of operators
with spectral singularities were also studied in [9–12].

Discrete spectrum, principal functions and eigenfunction expansion of the quadratic
pencil of Schrödinger operators were investigated in [13–15]. Spectral expansion of a
non-selfadjoint differential operator on the whole axis was studied in [16].

Let us consider the operator L generated in L2 (R+) by the differential expression

l (y) = −y′′ +
[
ν2 − 1

4

x2 + q (x)

]
y, x ∈ R+

and the boundary condition

lim
x→0

x−ν− 1
2 y (x) = 1,

where q is a complex valued function and ν is a complex number with Reν > 0. In [17]
it has been proved that the operator L has of a finite number and spectral singularities,
and each of them is of finite multiplicity under the condition

Sup
x∈R+

{
eε

√
x |q(x)|

}
< ∞, ε > 0 (1.3)

Moreover, the properties of the principal functions corresponding to the eigenvalues
and the spectral singularities of L have been obtained.

In this paper, which is a continuation of [17], we investigated the spectral functions,
using a contour integral method and the regularization of divergent integrals, using
summability factors.

2 Jost solution and jost function

Let us consider the equation

− y′′ +
[
ν2 − 1

4

x2 + q (x)

]
y = k2 y, x ∈ R+. (2.1)

We have previously considered in [17] that q is almost everywhere continuous in R+
and satisfies the following [18, Chap.3]:

∞∫
a

|q (x)| dx < ∞,

a
′∫

0

x |q (x)| dx < ∞,
(

a, a
′
> 0
)
. (2.2)
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Let ϕ (x, k, ν) and f (x, k, ν) denote the solutions of (2.1) satisfying the conditions

lim
x→0

x−ν− 1
2 y (x) = 1 (2.3)

and

lim
x→∞e−ikx y (x) = 1 (2.4)

respectively. The solution f (x, k, ν) is called Jost solution of (2.1). Note that, under
the condition (2.2) the solution ϕ (x, k, ν) is an entire function of k and Jost solution
is an analytic function of k in C+ := {k : k ∈ C, Im k > 0} and continuous in C+ =
{k : k ∈ C, Im λ ≥ 0} [18, Chap. 4]. Moreover Jost solution also satisfies

f (x, k, ν) = eikx [1 + o (1)] , k ∈ C+,Re ν > 0, x → ∞. (2.5)

Let us consider the function

f0 (x, k, ν) =
√

1

2
πkxe

− 1
2 iπ
(
ν+ 1

2

)
H2
ν (kx) , (2.6)

where H2
ν (kx) is the Hankel function of second kind. It is obvious that the function

f0 (x, k, ν) is the solution of the equation

−y′′ + ν2 − 1
4

x2 y = k2 y.

Under the condition (2.2) Jost solution has the representation

f (x, k, ν) = f0 (x, k, ν)+
∞∫

x

K (ν) (x, t) f0 (t, k, ν) dt, (2.7)

where, the kernel K (ν) (x, t)may be expressed in terms of q [19, Chap. 5] and satisfies

∣∣∣K (ν) (x, t)
∣∣∣ ≤ ce− ε

2 (x+t) (2.8)

where c > 0.
We will denote the Wronskian of the solutions f (x, k, ν) and ϕ (x, k, ν) by fν (k)

i.e.,

fν (k) = W [ f (x, k, ν) , ϕ (x, k, ν)] , k ∈ C+,Re ν > 0. (2.9)

The function fν is called Jost function of L . Under the condition (2.2) Jost function
is analytic with respect to k in C+ and continuous in C+ and
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fν (k) = 1 + o (1) , k ∈ C+, Re ν > 0, |k| → ∞, (2.10)

holds [18, Chap.5].

3 THE spectrum of L

By σd (L) and σss (L) we denote the eigenvalues and spectral singularities of L ,
respectively. We have previously shown [17] that

σd (L) =
{
λ : λ = k2, k ∈ C+, fν (k) = 0

}
σss (L) =

{
λ : λ = k2, k ∈ R

∗, fν (k) = 0
}

where R
∗ = R� {0}.

We have also previously obtained that [17]: Let G (x, t, k, ν) be the Green function
of L , i.e.,

G (x, t, k, ν) =
{
ϕ(t,k,ν) f (x,k,ν)

fν (k)
, 0 < t < x

ϕ(x,k,ν) f (t,k,ν)
fν (k)

, x ≤ t < ∞.
(3.1)

Under the condition (1.3), we know that has a finite number of eigenvalues and spectral
singularities, and each of them is finite multiplicity [17]. Let λ1 = k2

1, . . . , λα = k2
α

and λα+1 = k2
α+1, . . . , λn = k2

n denote the eigenvalues and the spectral singularities
of L with multiplicities m1, . . . ,mα and mα+1, . . . ,mn respectively.

We will also need the Hilbert spaces

Hm =
⎧⎨
⎩ f :

∞∫
0

(1 + x)2m | f (x)|2 dx < ∞
⎫⎬
⎭ , m = 0, 1, . . . ,

H−m =
⎧⎨
⎩g :

∞∫
0

(1 + x)−2m |g (x)|2 dx < ∞
⎫⎬
⎭ , m = 0, 1, . . . ,

with

‖ f ‖2
m =

∞∫
0

(1 + x)2m | f (x)|2 dx, ‖g‖2
m =

∞∫
0

(1 + x)−2m |g (x)|2 dx,

respectively. It is obvious that H0 = L2 (R+) and

Hm+1 � Hm � L2 (R+) � H−m � H−(m+1), m = 1, 2, ...,

and H−m is isomorphic to the dual of Hm : H
′
m ∼ H−m .
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We have previously shown that [17]:

	 j
(
., kp, ν

) ∈ L2 (R+) , j = 0, 1, . . . ,m p − 1, p = 1, . . . , α, (3.2)

	 j
(
., kp, ν

) ∈ H−( j+1), j = 0, 1, . . . ,m p − 1, p = α + 1, . . . , n (3.3)

where

	 j
(
., kp, ν

) =
j∑

β=0

A j−β(kp)
1

β!
{
∂β

∂kβ
f (x, k, ν)

}
k=kp

j = 0, 1, . . . ,m p − 1, p = 1, . . . , α, α + 1, . . . , n (3.4)

The functions	 j
(
., kp, ν

)
, j = 0, 1, . . . ,m p −1, p = 1, . . . , α and	 j

(
., kp, ν

)
,

j = 0, 1, . . . ,m p − 1, p = α + 1, . . . , n are the principal functions corresponding
to the eigenvalues and the spectral singularities of L, respectively.

4 THE spectral expansion

Let C∞
0 (R+) denote the set of infinetely differentiable functions in R+ with compact

support. Then

ψ(x) = R(L)R−1(L)ψ(x) = R(L)(L − k2 I )ψ(x)

ψ(x) =
∞∫

0

G(x, t, k, υ)

[
−ψ ′′

(t)+ ν2 − 1
4

t2 ψ(t)+ q(t)ψ(t)− k2ψ(t)

]
dt

for each ψ ∈ C∞
0 (R+). Thus we obtain

ψ(x)

k
= 1

k

∞∫
0

G(x, t, k, υ)θ(t)dt

+1

k

∞∫
0

G(x, t, k, υ)

(
ν2 − 1

4

t2

)
ψ(t)dt − k D(x, k, υ) (4.1)

where

θ(t) = −ψ ′′
(t)+ q(t)ψ(t), D(x, k, υ) =

∞∫
0

G(x, t, k, υ)ψ(t)dt

Let γr denote the disc with center at the origin having radius r; let ∂γr be the boundary
of γr . r will be chosen so that all eigenvalues and spectral singularities of L are in γr .
Prη denotes the part of γr lying in the strip |Im λ| ≤ η and γrη = γ+

rη ∪ γ−
rη, where
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Fig. 1 Eigenvalues and spectral
singularities are on the
semicircles only

γ+
rη and γ−

rη are the parts of γr\Prη in the upper and the lower half-planes, respectively
(see Fig. 1). We mention that γ−

rη has not any eigenvalues and spectral singularities.
We chose η so small that Prη does not contain any eigenvalues of L.
So we easily see that

∂γr = ∂γrη ∪ ∂Prη (4.2)

From (4.1) we get

ψ(x) = 1

2π i

∫
∂γr

⎧⎨
⎩1

k

∞∫
0

G(x, t, k, υ)θ(t)dt

⎫⎬
⎭ dk

+ 1

2π i

∫
∂γr

⎧⎨
⎩1

k

∞∫
0

G(x, t, k, υ)

(
ν2 − 1

4

t2

)
ψ(t)dt

⎫⎬
⎭ dk

− 1

2π i

∫
∂γr

k D(x, k, υ)dk (4.3)

Using (2.10), (3.1) and Jordan’s lemma, we see that the first term of the right hand side
of (4.3) vanishes as r → ∞. The same result holds for the second term. This can be
obtained from (2.10) utilizing integration by parts. Then considering (4.2) we obtain

ψ(x) = − lim
r → ∞
η → 0

1

2π i

∫
∂γrη

k D(x, k, υ)dk − lim
r → ∞
η → 0

1

2π i

∫
∂Prη

k D(x, k, υ)dk

(4.4)

We easily obtain that the first integral in (4.4) gives
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Fig. 2 Isolated real zeros

lim
r → ∞
η → 0

1

2π i

∫
∂γrη

k D(x, k, υ)dk =
α∑

i=1

Re s
λ=λi

[k D(x, k, ν)]

where

D(x, k, ν) =
∞∫

0

G(x, t, k, υ)ψ(t)dt.

Let � be the contour which is isolates the real zeros of f by semicircles with centers
at ki , i = 1, 2, . . . , α having the same radius δ0 in the upper-half plane. The radius
of semicircles being chosen so small that their diameters are mutually disjoint and do
not contain the point λ = 0 (see Fig. 2).

As it is easily seen from Fig. 1, we find

lim
r → ∞
η → 0

1

2π i

∫
∂Prη

k D(x, k, υ)dk = 1

2π i

∫
�

k D(x, k, υ)dk

Therefore (4.4) can be written as

ψ(x) = −
α∑

i=1

Re s
λ=λi

[k D(x, k, ν)] − 1

2π i

∫
�

k D(x, k, υ)dk (4.5)

Theorem 4.1 For every ψ ∈ C∞
0 (R+)

ψ(x) =
α∑

i=1

{(
∂

∂k

)mi −1

[ai (k)	 (x, k, ν)	 (ψ, k, ν)]

}
k=ki

+ 1

2π i

∫
�

k f (0, k, υ)

fυ(k)
	 (x, k, ν)	 (ψ, k, ν) dk (4.6)

0 =
α∑

i=1

{(
∂

∂k

)mi −1

[bi (k)	 (x, k, ν)	 (ψ, k, ν)]

}
k=ki

+ 1

2π i

∫
�

f (0, k, υ)

fυ(k)
	 (x, k, ν)	 (ψ, k, ν) dk (4.7)
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where

ai (k) = −k(k − ki )
mi f (0, k, υ)

(mi − 1)! fυ(k)
, i = 1, . . . , j (4.8)

bi (k) = − (k − ki )
mi f (0, k, υ)

(mi − 1)! fυ(k)
, i = 1, . . . , k (4.9)

and

	(ψ, k, ν) =
∞∫

0

ψ(t)	(x, k, υ)dt

Proof Let B(x, k, ν) be the solution of (2.1) subject to the initial conditions

limx→0 x−υ− 1
2 y(x) = 1, limx→∞ e−ikx y(x) = 1 Then

G(x, t, k, υ) = f (0, k, υ)

fυ(k)
	 (x, k, ν)	 (t, k, ν)+ a(x, t, k; ν) (4.10)

where

a (x, t, k, ν) =
{

B(x, k, ν)	 (t, k, ν) , 0 < t < x
B(t, k, ν)	 (x, k, ν) , x ≤ t < ∞

and a (x, t, k, ν) is an entire function of k. From (4.5) and (4.10) we obtain (4.6).
Writing (4.1) as

ψ(x)

k2 = 1

k2

∞∫
0

G(x, t, k, υ)θ(t)dt + 1

k2

∞∫
0

G(x, t, k, υ)

×
(
ν2 − 1

4

t2

)
ψ(t)dt − D(x, k, υ)

and repeating the calculation as we done for (4.1), we have (4.7). 
�
Since the contour � in (4.6) and (4.7) do not coincide with the continuous spectrum

of L, these formulae contains non-spectral objects. The purpose of this article is to
transform (4.6) and (4.7) a into two-fold spectral expansion with respect to the principal
functions of L.

Theorem 4.2 For any ψ ∈ C∞
0 (R+) there exists a constant c > 0 so that

∞∫
−∞

|k	(ψ, k, ν)|2 dk ≤ c

∞∫
0

|ψ(x)|2 dx (4.11)
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Proof From (3.4) we get

	 j
(
ψ, kp, ν

) =
j∑

β=0

A j−β(kp)
1

β!
{
∂β

∂kβ
f (ψ, k, ν)

}
k=kp

(4.12)

where

f (ψ, k, ν) =
∞∫

0

ψ(x) f (x, k, ν) dx .

Using (2.7), we obtain

f (ψ, k, ν) =
∞∫

0

⎧⎨
⎩ f0 (x, k, ν)+

∞∫
x

K υ(x, t) f0 (t, k, ν) dt

⎫⎬
⎭ψ(x)dx

=
∞∫

0

ψ(x) f0 (x, k, ν) dx +
∞∫

0

∞∫
x

ψ(x)K υ(x, t) f0 (x, k, ν) dtdx .

Changing the order of integration, we get

f (ψ, k, ν) =
∞∫

0

{
(I + K υ)ψ(t)

}
f0 (t, k, ν) dt (4.13)

in which the operator I is the unit operator, and K υ is the operator defined by

K υψ(t) =
t∫

0

K υ(x, t)ψ(x)dx .

From (2.8) we understand K υ is a compact operator in L2 (R+). Thus (I + K υ) is a
continuous and one-to-one on L2 (R+). Using the Parseval’s equality for the Fourier
transforms and (4.13) we get

∞∫
−∞

| f (ψ, k, υ)|2 dk ≤ c1

∞∫
0

|ψ(x)|2 dx (4.14)

where c1 > 0 is a constant.
The proof of the lemma is completed by (2.10) and (4.14). 
�
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By the preceding lemma for every function ψ ∈ L2 (R+) the limit

	(ψ, k, ν) = lim
N→∞

N∫
0

ψ(x)	 (x, k, ν) dx

exists in the sense of convergence in the mean square, relative to the measure k2dk on
the real axis; that is,

lim
N→∞

∞∫
−∞

∣∣∣∣∣∣	(ψ, k, ν)−
N∫

0

ψ(x)	 (x, k, ν) dx

∣∣∣∣∣∣
2

k2dk = 0 (4.15)

Since C∞
0 (R+) is dense in L2 (R+), the estimate (4.11) may be extended onto L2 (R+)

for any ψ ∈ L2 (R+) as

∞∫
−∞

|k	(ψ, k, υ)|2 dk ≤ c

∞∫
0

|ψ(x)|2 dx (4.16)

where	(ψ, k, υ)must be understood in the sense of (4.15). We shall need a general-
ization of this estimate.

Theorem 4.3 If ψ ∈ Hm, then 	(ψ, k, υ) has a derivative of order (m-1) which is
absolutely continuous of every finite subinterval of the real axis and satisfies

∞∫
−∞

∣∣∣∣
(

d

dk

)n

[k	(ψ, k, υ)] dk

∣∣∣∣
2

≤ cn

∞∫
0

(1 + x)2n |ψ(x)|2 dx (4.17)

where cn > 0 are constants, n = 1, . . . ,m.

The proof is similar to that of Theorem 4.2.
In order to transform (4.6) and (4.7) into the spectral expansion of L, we have to

reform the integrals over � onto the real axis.
Since the spectral singularities of L are the zeros of f , the integrals over the real

axis are divergent in the norm of L2 (R+). Now we will investigate the convergence of
these integrals in a norm which is weaker than the norm of L2 (R+). For this purpose
we will use the technique of regularization of divergent integrals. So we define the
following summability factor:

Fpβ(k) =
{
(k−kp)

β

β! ,
∣∣k − kp

∣∣ < δ, p = α + 1, . . . , n
0,

∣∣k − kp
∣∣ � δ, p = α + 1, . . . , n

(4.18)

with δ > δ0. We can choose δ > 0 so small that the δ−neighborhoods of kp, p =
α + 1, . . . , n have no common points and do not contain the point k = 0. Define the
functional
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F {g(k)} = g(k)−
n∑

p=α+1

m p−1∑
β=0

{(
d

dk

)β
g(k)

}
k=kp

Fpβ(k) (4.19)

where g is chosen so that the right hand side of the above formulae is meaningful. It is
evident from (4.18) that kα+1, . . . , kn are the roots of F {g(k)} = 0 at least of orders
mα+1, . . . ,mn .

In the following we will use the operators

Pψ(x) = 1

2π i

∫
�

k f (0, k, υ)

fυ(k)
	 (x, k, ν)	 (ψ, k, ν) dk (4.20)

and

Iψ(x) = 1

2π i

n∑
p=α+1

m p−1∑
β=0

{(
∂

∂k

)β
[	(x, k, ν)	 (ψ, k, ν)]

}
k=kp

×
∫
�

k f (0, k, υ)

fυ(k)
Fpβ(k)dk

+ 1

2π i

∞∫
−∞

k f (0, k, υ)

fυ(k)
F {	(x, k, ν)	 (ψ, k, ν)} dk

Since under the condition (1.3 ) f (0, k, υ) has an analytic continuation to the half-
planes Im k > − ε

2 , we get

Pψ = Iψ

for ψ ∈ C∞
0 (R+).

Theorem 4.4 For each ψ ∈ H(m0+1), there exist a constant c > 0 such that

‖Iψ‖−(m0+1) ≤ c1 ‖ψ‖(m0+1) (4.21)

where m0 = max {mα+1, . . . , .mn}.

Proof Define

�p = (kp − δ, kp + δ), p = α + 1, . . . , n (4.22)

Then 0 /∈ �p, p = α + 1, . . . , n. Using the integral form of remainder in the Taylor
formula, we get
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F {	(x, k, ν)	 (ψ, k, ν)}

=

⎧⎪⎨
⎪⎩
	(x, k, ν)	 (ψ, k, ν) , k ∈ �0

1
(m p−1)!

k∫
kp

(k − ξ)m p−1
{(

∂
∂ξ

)m p
[	(x, k, ξ)	 (ψ, k, ξ)]

}
dξ , k ∈ �p

(4.23)

where �0 = R�
{⋃n

p=α+1�p

}
.

If we use the notation

Ipψ(x) = 1

2π i

∫
�p

k f (0, k, υ)

fυ(k)
F {	(x, k, ν)	 (ψ, k, ν)} dk p = α + 1, . . . , n

∼
Iψ(x) = 1

2π i

n∑
p=α+1

m p−1∑
β=0

{(
∂

∂k

)β
[	(x, k, ν)	 (ψ, k, ν)]

}
k=kp

×
∫
�

k f (0, k, υ)

fυ(k)
Fpβ(k)dk

we obtain

I = Iα+1 + · · · + In + ∼
I (4.24)

from (4.22) and (4.23). We now show that each of the operators Iα+1, . . . , In and
∼
I is continuous from H(m0+1) into H−(m0+1). We start from with

∼
I . From (4.18) we

obtain the absolute convergence of

∫
�

k f (0, k, υ)

fυ(k)
Fpβ(k)dk.

Using (3.3) and the isomorphism H−m0 ∼ H ′
m0

we see that
∼
I is continuous from Hm0

into H−m0 or from H(m0+1) into H−(m0+1). Hence there exists a constant
∼
c > 0 such

that

∥∥∥∥∼Iψ(x)
∥∥∥∥−(m0+1)

≤ ∼
c ‖ψ‖(m0+1) (4.25)

for any ψ ∈ H(m0+1).
Next we want to show the continuity of Ip, p = α + 1, . . . , n from H(m0+1) into

H−(m0+1). From (4.24) we see that
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Ipψ(x) = 1

2π i(m p − 1)!
∫
�p

k f (0, k, υ)

fυ(k)

k∫
kp

(k − ξ)m p−1

×
{(

∂

∂ξ

)m p

[	(x, k, υ)	 (ψ, k, υ)]

}
dξdk (4.26)

Interchanging the order of integration, we get

Ipψ(x) = 1

2π i(m p − 1)!

⎧⎪⎨
⎪⎩

kp+δ∫
kp

kp+δ∫
ξ

{(
∂

∂ξ

)m p

[	(x, ξ, υ)	 (ψ, ξ, υ)]

}

×(k − ξ)m p−1 k f (0, k, υ)

fυ(k)
dkdξ

−
kp∫

kp−δ

ξ∫
kp−δ

{(
∂

∂ξ

)m p

[	(x, ξ, υ)	 (ψ, ξ, υ)]

}

×(k − ξ)m p−1 k f (0, k, υ)

fυ(k)
dkdξ.

Since kp is a zero of fυ(k) order m p, there exists a continuous function f p such that
f p(kp) �= 0 and f (k) = (k − kp)

m p f p(k). On the other hand,

∣∣∣∣∣∣∣
kp+δ∫
ξ

(k − ξ)m p−1 k f (0, k, υ)

fυ(k)
dk

∣∣∣∣∣∣∣ ≤ h(1)p (ξ)
[
ln δ − ln(ξ − kp)

]
(4.27)

if ξ > kp, and

∣∣∣∣∣∣∣
ξ∫

kp−δ
(k − ξ)m p−1 k f (0, k, υ)

fυ(k)
dk

∣∣∣∣∣∣∣ ≤ h(2)p (ξ)
[
ln(kp − ξ)− ln δ

]
(4.28)

if ξ < kp, where

h(1)p (ξ) = max
k∈[ξ,kp+δ]

∣∣∣∣k f (0, k, υ)

fυ(k)

∣∣∣∣ , h(2)p (ξ) = max
k∈[kp−δ,ξ]

∣∣∣∣k f (0, k, υ)

fυ(k)

∣∣∣∣ .
(4.27) and (4.28) show that Ip, p = α + 1, . . . , n are integral operators with kernels
having logarithmic singularities, i.e., weak singularities.

(4.26) can be written as

Ipψ(x) =
∫
�p

m p∑
s=0

bsp(x, ξ)

{(
d

dξ

)s

	(ψ, ξ, υ)

}
dξ.
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Define

Bsp =
∞∫

0

∫
�p

∣∣∣∣ bsp(x, ξ)

(1 + x)m0+1

∣∣∣∣
2

dξdx .

We see that Bsp < ∞, by (3.3), (4.27) and (4.28). Since

∥∥Ipψ
∥∥2

−(m0+1) =
∞∫

0

∣∣∣∣ Ipψ(x)

(1 + x)m0+1

∣∣∣∣
2

dx

≤
m p∑
s=0

∞∫
0

∫
�p

bsp(x, ξ)

(1 + x)m0+1 dξdx
∫
�p

(
d

dξ

)s

	(ψ, ξ, υ) dξ

=
m p∑
k=0

Bsp

∫
�p

∣∣∣∣
(

d

dξ

)s

	(ψ, ξ, υ)

∣∣∣∣
2

dξ

Utilizing (4.16) and (4.17) we obtain

∥∥Ipψ
∥∥−(m0+1) ≤ cp ‖ψ‖m0

≤ cp ‖ψ‖(m0+1) , p = α + 1, . . . , n (4.29)

where cp are constants.
Lastly we consider the operator I0 which is defined by

I0ψ = 1

2π i

∞∫
−∞

�0(k)
k f (0, k, υ)

fυ(k)
	 (x, k, υ)	 (ψ, k, υ) dk (4.30)

where �0 is the characteristic function of the interval �0. From (4.30), similar to the
proof of Theorem 4.2, we get

∞∫
0

∣∣Ipψ(x)
∣∣2 dx ≤ c0

∞∫
0

|ψ(x)|2 dx,

where c0 > 0 is a constant. Since

H(m0+1) � L2 (R+) � H−(m0+1),

we find

‖I0ψ‖−(m0+1) ≤ c0 ‖ψ‖(m0+1) (4.31)
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From (4.24), (4.25), (4.29) and (4.31) we have

‖Iψ‖−(m0+1) ≤ c ‖ψ‖(m0+1)


�
Then for every ψ ∈ H(m0+1),

Iψ(x) = 1

2π i

n∑
p=α+1

m p−1∑
β=0

{(
∂

∂k

)β
[	(x, k, ν)	 (ψ, k, ν)]

}
k=kp

×
∫
�

k f (0, k, υ)

fυ(k)
Fpβ(k)dk

+ 1

2π i

∞∫
−∞

k f (0, k, υ)

fυ(k)
F {	(x, k, υ)	 (ψ, k, υ)} dk (4.32)

Let ap(k) denote any function which is defined and differentiable in a neighbourhood
of kp, and which satisfies the condition{(

d

dk

)m p−1−β
ap(k)

}
k=kp

= 1

2π i

(
m p − 1

β

)∫
�

k f (0, k, υ)

fυ(k)
Fpβ(k)dk

p = α + 1, . . . , n (4.33)

Then (4.32) can be written as

Iψ(x) =
n∑

p=α+1

{(
∂

∂k

)m p−1 [
ap(k)	 (x, k, ν)	 (ψ, k, ν)

]}
k=kp

+ 1

2π i

∞∫
−∞

k f (0, k, υ)

fυ(k)
F {	(x, k, υ)	 (ψ, k, υ)} dk (4.34)

we shall also use the following integral operator [see (4.7)]:

Qψ(x) = 1

2π i

∫
�

f (0, k, υ)

fυ(k)
	 (x, k, υ)	 (ψ, k, υ) dk

Jψ(x) = 1

2π i

n∑
p=α+1

m p−1∑
β=0

{(
∂

∂k

)β
[	(x, k, ν)	 (ψ, k, ν)]

}
k=kp

×
∫
�

f (0, k, υ)

fυ(k)
Fpβ(k)dk

+ 1

2π i

∞∫
−∞

f (0, k, υ)

fυ(k)
F {	(x, k, υ)	 (ψ, k, υ)} dk (4.35)
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It is evident that

Qψ = Jψ,

for ψ ∈ C∞
0 (R+).

Similar to Theorem 4.4, we find.

Theorem 4.5 For every each ψ ∈ H(m0+1), there exist a constant c > 0 such that

‖Jψ‖−(m0+1) ≤ c ‖ψ‖(m0+1) .

It is evident that, for every ψ ∈ H(m0+1)

Jψ(x) =
n∑

p=α+1

{(
∂

∂k

)m p−1 [
bp(k)	 (x, k, ν)	 (ψ, k, ν)

]}
k=kp

+ 1

2π i

∞∫
−∞

f (0, k, υ)

fυ(k)
F {	(x, k, υ)	 (ψ, k, υ)} dk (4.36)

where{(
d

dk

)m p−1−β
bp(k)

}
k=kp

= 1

2π i

(
m p − 1

β

)∫
�

k f (0, k, υ)

fυ(k)
Fpβ(k)dk

p = α + 1, . . . , n (4.37)

Theorem 4.6 Under the condition (1.3) the following two-fold spectral expansion in
terms of the principal functions of L holds,

ψ(x) =
α∑

i=1

{(
∂

∂k

)mi −1

[ai (k)	 (x, k, ν)	 (ψ, k, ν)]

}
k=ki

+
n∑

p=α+1

{(
∂

∂k

)m p−1 [
ap(k)	 (x, k, ν)	 (ψ, k, ν)

]}
k=kp

+ 1

2π i

∞∫
−∞

k f (0, k, υ)

fυ(k)
F {	(x, k, υ)	 (ψ, k, υ)} dk (4.38)

0 =
α∑

i=1

{(
∂

∂k

)mi −1

[bi (k)	 (x, k, ν)	 (ψ, k, ν)]

}
k=ki

+
n∑

p=α+1

{(
∂

∂k

)m p−1 [
bp(k)	 (x, k, ν)	 (ψ, k, ν)

]}
k=kp

+ 1

2π i

∞∫
−∞

f (0, k, υ)

fυ(k)
F {	(x, k, υ)	 (ψ, k, υ)} dk (4.39)
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for every function ψ ∈ H(m0+1). The integrals in (4.38) and (4.39) converge in the
norm of H−(m0+1) where ai , bi , F, ap and bp defined by (4.8), (4.9), ( 4.19), (4.33),
and (4.37) respectively.

Proof We obtain (4.38) and (4.39) for ψ ∈ C∞
0 (R+) ⊂ H(m0+1), by use of (4.6),

(4.7), (4.20) and (4.34)–(4.36). The convergence of the integrals appearing in (4.38)
and (4.39) in the norm of H−(m0+1), has been given in Theorem 4.4 and Theorem 4.5.
Since C∞

0 (R+) is dense in H(m0+1), the proof is completed. 
�
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